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A targeted real-time early warning score (TREWScore)
for septic shock
Katharine E. Henry,1 David N. Hager,2 Peter J. Pronovost,3,4,5 Suchi Saria1,3,5,6*

Sepsis is a leading cause of death in the United States, with mortality highest among patients who develop septic
shock. Early aggressive treatment decreasesmorbidity andmortality. Although automated screening tools can detect
patients currently experiencing severe sepsis and septic shock, none predict those at greatest risk of developing
shock. We analyzed routinely available physiological and laboratory data from intensive care unit patients and devel-
oped “TREWScore,” a targeted real-time early warning score that predicts which patients will develop septic shock.
TREWScore identified patients before the onset of septic shock with an area under the ROC (receiver operating
characteristic) curve (AUC) of 0.83 [95% confidence interval (CI), 0.81 to 0.85]. At a specificity of 0.67, TREWScore
achieved a sensitivity of 0.85 and identified patients a median of 28.2 [interquartile range (IQR), 10.6 to 94.2] hours
before onset. Of those identified, two-thirds were identified before any sepsis-related organ dysfunction. In compar-
ison, the Modified Early Warning Score, which has been used clinically for septic shock prediction, achieved a lower
AUC of 0.73 (95% CI, 0.71 to 0.76). A routine screening protocol based on the presence of two of the systemic inflam-
matory response syndrome criteria, suspicion of infection, and either hypotension or hyperlactatemia achieved a low-
er sensitivity of 0.74 at a comparable specificity of 0.64. Continuous sampling of data from the electronic health
records and calculation of TREWScore may allow clinicians to identify patients at risk for septic shock and provide
earlier interventions that would prevent or mitigate the associated morbidity and mortality.
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INTRODUCTION

Seven hundred fifty thousand patients develop severe sepsis and septic
shock in the United States each year. More than half of them are
admitted to an intensive care unit (ICU), accounting for 10% of all
ICU admissions, 20 to 30% of hospital deaths, and $15.4 billion in an-
nual health care costs (1–3). Several studies have demonstrated that
morbidity, mortality, and length of stay are decreased when severe sep-
sis and septic shock are identified and treated early (4–8). In particular,
one study showed that mortality from septic shock increased by 7.6%
with every hour that treatment was delayed after the onset of hypo-
tension (9).

More recent studies comparing protocolized care, usual care, and
early goal-directed therapy (EGDT) for patients with septic shock sug-
gest that usual care is as effective as EGDT (10–12). Some have inter-
preted this to mean that usual care has improved over time and reflects
important aspects of EGDT, such as early antibiotics and early ag-
gressive fluid resuscitation (13). It is likely that continued early identi-
fication and treatment will further improve outcomes. However, the
best approach to managing patients at high risk of developing septic
shock before the onset of severe sepsis or shock has not been studied.
Methods that can identify ahead of time which patients will later expe-
rience septic shock are needed to further understand, study, and im-
prove outcomes in this population.

General-purpose illness severity scoring systems such as the Acute
Physiology and Chronic Health Evaluation (APACHE II), Simplified
1Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.
2Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of
Medicine, Johns Hopkins University, Baltimore, MD 21205, USA. 3Armstrong Institute for
Patient Safety and Quality, Johns Hopkins University, Baltimore, MD 21202, USA. 4Department
of Anesthesiology and Critical CareMedicine, School of Medicine, Johns Hopkins University,
Baltimore, MD 21202, USA. 5Department of Health Policy and Management, Bloomberg
School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA. 6Department
of Applied Math and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA.
*Corresponding author. E-mail: ssaria@cs.jhu.edu
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Acute Physiology Score (SAPS II), SequentialOrganFailureAssessment
(SOFA) scores, Modified Early Warning Score (MEWS), and Simple
Clinical Score (SCS) have been validated to assess illness severity and
risk of death among septic patients (14–17). Although these scores
are useful for predicting general deterioration ormortality, they typical-
ly cannot distinguish with high sensitivity and specificity which patients
are at highest risk of developing a specific acute condition.

The increased use of electronic health records (EHRs), which can be
queried in real time, has generated interest in automating tools that
identify patients at risk for septic shock (18–20). A number of “early
warning systems,” “track and trigger” initiatives, “listening applica-
tions,” and “sniffers” have been implemented to improve detection
and timeliness of therapy for patientswith severe sepsis and septic shock
(18, 20–23). Although these tools have been successful at detecting pa-
tients currently experiencing severe sepsis or septic shock, none predict
which patients are at highest risk of developing septic shock.

The adoption of the Affordable Care Act has added to the growing
excitement around predictive models derived from electronic health
data in a variety of applications (24), including discharge planning
(25), risk stratification (26, 27), and identification of acute adverse
events (28, 29). For septic shock in particular, promising work includes
that of predicting septic shock using high-fidelity physiological signals
collected directly frombedsidemonitors (30, 31), inferring relationships
between predictors of septic shock using Bayesian networks (32), and
using routine measurements for septic shock prediction (33–35). No
current prediction models that use only data routinely stored in the
EHR predict septic shock with high sensitivity and specificity many
hours before onset.Moreover, when learning predictive risk scores, cur-
rent methods (34, 36, 37) often have not accounted for the censoring
effects of clinical interventions on patient outcomes (38). For instance,
a patient with severe sepsis who received fluids and never developed
septic shock would be treated as a negative case, despite the possibility
that he or she might have developed septic shock in the absence of such
treatment and therefore could be considered a positive case up until the
ceTranslationalMedicine.org 5 August 2015 Vol 7 Issue 299 299ra122 1
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time of treatment (38). Methods that as-
sume that these patients are negative and
do not account for the uncertainty in the
outcome due to censoring can yield scores
that underestimate the probability of a
positive outcome (38, 39).

Using supervised learning, a machine
learning methodology, and the MIMIC
(Multiparameter Intelligent Monitoring
in Intensive Care)–II Clinical Database
(40), we trained a model that accounts
for the censoring effects of clinical inter-
ventions on patient outcomes. We used
thismodel todevelop andvalidate a targeted
real-time earlywarning score (TREWScore)
that identifies those patients at high risk of
developing septic shock in the future. The
ability of this score to identifypatients before
the onset of septic shock and sepsis-related
organ failure (severe sepsis) was then com-
pared to two recently used approaches:
first, MEWS, a severity score, originally
developed for ICUtriage in surgicalpatients,
that has been used for sepsis screening
(41, 42) and second, a routine septic shock
screening protocol (18, 20) that identifies
patients who have at least two of the sys-
temic inflammatory response syndrome
(SIRS) criteria, suspicion of infection, and
either hypotension or hyperlactatemia.
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RESULTS

Characterization of TREWScore
TREWScore is obtainedby training amodel
that estimates the time to an adverse event
using supervised learning. The model con-
sidered 54 potential features that were
derived from routinely available measure-
ments in the EHR. The complete list of
features is provided in the Supplementary
Materials and Methods. The learning al-
gorithm automatically selected a subset of
the features that were most indicative of
septic shock and learned a set of weights
for them (table S1). The features at each
time point were labeled by the time to
onset, the number of hours until the onset
of septic shock (Fig. 1A), and used to gen-
erate TREWScore risk predictions over
time (Fig. 1B).

In the following results, we refer to a
patient as positive if the patient developed
septic shock during his or her stay and
negative if the patient never developed sep-
tic shock and did not receive characteristic
treatment for septic shock, namely, a fluid
Detection
criteria

Detection
criteria

B
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sk

Hours until septic shock onset

Organ
dysfunction

onset

Septic
shock
onsetCurrent time

Time to event onset}A

GCS

Platelets

BUN creatinine

Arterial pH

Temperature

Bicarbonate

Respiratory rate

WBC

Shock index

Systolic BP

Heart rate

Hours until septic shock onset

Fig. 1. Example patient features and risk trajectory. (A) Example features over time are shown for a
patient developing septic shock (time of shock onset indicated by the red line). Point in time data used

to calculate TREWScore are displayed in the black box, alongwith the associated time to onset and the onset
of sepsis-related organ dysfunction (indicated by the blue line). Feature measurements are indicated by
circles that are filled for new observations or hollow otherwise. Features displayed are Glasgow Coma Scale
(GCS), platelets, ratio of blood urea nitrogen to creatinine (BUN/creatinine), arterial pH, temperature, bi-
carbonate, respiratory rate (RR), white blood cell count (WBC), heart rate/systolic blood pressure (SBP) (shock
index), SBP, and heart rate. (B) The TREWScore over time for the patient in (A) is shown in blue. Risk predictions
are made as new measurements are added to the EHR, as if in real time. The horizontal dashed gray line in-
dicates the detection threshold corresponding to a sensitivity of 0.85. The figure portrays two sets of potential
detection criteria: (i) Identify the patient as at high risk of septic shock the first time the risk score crosses the
detection threshold. (ii) Identify the patient only after the risk score remains above the detection threshold for
at least 8 hours or some other desired length of time.
www.ScienceTranslationalMedicine.org 5 August 2015 Vol 7 Issue 299 299ra122 2
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bolus of at least 500 ml. We call the patient censored due to clinical in-
tervention if one of two situations masking the true time of septic shock
onset occurred. First, if a patientwith severe sepsis received characteristic
treatment for septic shock but never developed shock, it is unknown
whether he or she would have developed septic shock in the absence
of such treatment (38). We refer to these patients as right-censored after
treatment. Second, if a patient both experienced septic shock and re-
ceived treatment for septic shock before shock onset, it is unknown
whether the treatment delayed the onset of septic shock and to what ex-
tent. Thus, in these patients, the exact time of septic shock onset, had the
patient not received treatment, could have been any point between the
time of treatment and the time of shock onset. We refer to these patients
as interval-censored (see Materials and Methods for more details).

Identification of patients at risk for septic shock
We first considered the performance of TREWScore at identifying pa-
tients at risk for septic shock before the onset of shock. The data set
consisted of adult patients from the MIMIC-II Clinical Database (40).
The patients were randomly assigned to either the development or the
validation set. See table S2 for population characteristics. The Materials
and Methods section provides more details on the development and
validation sets.

Among the 13,014 patients (1836 positive, 11,178 negative) in the
development set where the final outcome was known, TREWScore
identified patients before the onset of septic shock with an area under
the receiver operating characteristic (ROC) curve (AUC) of 0.82 [95%
confidence interval (CI), 0.81 to 0.83]. As described in theMaterials and
Methods, patients who were right-censored after treatment were ex-
cluded when computing the evaluation metrics because their final out-
come was unknown, but their data were used in estimating model
coefficients. Model coefficients obtained from this set were fixed and
then applied to data from the 3011 patients (455 positive, 2556 negative)
in the validation set as though they were observed prospectively. Specif-
ically, for each patient in the validation set, the TREWScore was recom-
www.Scien
puted as new data became available. A patient was identified as at risk
when his or her score crossed the specified risk threshold. In the vali-
dation set, the AUC obtained for the TREWScore was 0.83 (95% CI,
0.81 to 0.85) (Fig. 2). At a specificity of 0.67 [false-positive rate (FPR)
of 0.33], TREWScore achieved a sensitivity of 0.85. Patients were identified
a median of 28.2 hours (IQR, 10.6 to 94.2) before shock onset (Fig. 3A).

Identification of patients before organ dysfunction
A critical event in the development of septic shock is the onset of sepsis-
related organ dysfunction (severe sepsis), because mortality rates have
been shown to increase after this point (1, 9). At a sensitivity of 0.85,
more than two-thirds (68.8%) of the patients identified by TREWScore
were identified before any sepsis-related organ dysfunction. These pa-
tients were identified a median of 7.43 hours (IQR, 2.53 to 25.4) prior
(Fig. 3B).

Comparison of TREWScore to other identification methods
Weevaluated theperformanceof two recently advocated sepsis-screening
methods for the purpose of providing a comparative analysis of the clinical
use of TREWScore.We first compared the performance of TREWScore
to MEWS, a general metric used to identify medical patients at high risk
of catastrophic deterioration (17). Although it was not specifically devel-
oped for tracking sepsis, MEWS has been used to facilitate the identifica-
tion of patients at risk for severe sepsis and septic shock (41, 42). MEWS
assigns points based on RR, heart rate, SBP, temperature, and the Alert,
Voice, Pain, Unresponsive (AVPU) score (43). Because the AVPU scores
are not routinely computed in the ICU, we mapped the GCS (another
neurologic score that is routinely computed in the ICU) to AVPU values
(44). Compared to the AUC of 0.83 (95% CI, 0.81 to 0.85) achieved by
TREWScore, MEWS identified septic shock patients before onset with a
lower AUC of 0.73 (95% CI, 0.71 to 0.76) (Fig. 2).

We next compared the performance of TREWScore against a rou-
tine screening protocol for septic shockwhere a patient was identified as
at risk for septic shock if he or she met at least two of the SIRS criteria,
had suspicion of infection, and had either hypotension or hyperlactate-
mia (18, 20). In the validation set, the screening protocol identified pa-
tients before the onset of septic shock with a specificity of 0.64 (FPR,
0.36) and a sensitivity of 0.74. In comparison, at a similar specificity
of 0.67, TREWScore achieved a much higher sensitivity of 0.85 (Fig. 2).

Because the routine screening protocol is more commonly imple-
mented to identify patients at risk for septic shock, we elaborate on its
performance compared to that of TREWScore at a comparable specific-
ity of 0.67 (sensitivity, 0.85). Of all the patients with septic shock in the
validation set,most of them (60.9%)were first identified byTREWScore,
and fewer than a quarter of them (21.8%) were first identified by the
routine screening protocol (Fig. 3A). The remaining patients were either
identified by both systems at the same time (9.9%) or not identified by
either systembefore the onset of septic shock (7.5%).As explained in Fig.
3C, positive patients in Fig. 3A are shown in gray from the time of ICU
admission until they are identified by one or both of the systems, at
which point the color changes to indicate the identifying system(s). This
allows a qualitative comparison of the relative detection times.

We further compared the two approaches on the basis of the num-
ber of detections that occurred before organ dysfunction (Fig. 3B). At
comparable specificities, TREWScore identified 99more patients before
the onset of sepsis-related organ dysfunction (Fig. 3B). Notably, this is a
58.6% increase in the total number of patients identified before organ
dysfunction.
Fig. 2. ROC for detection of septic shock before onset in the validation
set. The ROC curve for TREWScore is shown in blue, with the ROC curve for

MEWS in red. The sensitivity and specificity performance of the routine
screening criteria is indicated by the purple dot. Normal 95% CIs are shown
for TREWScore and MEWS. TPR, true-positive rate; FPR, false-positive rate.
ceTranslationalMedicine.org 5 August 2015 Vol 7 Issue 299 299ra122 3
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DISCUSSION

Using routinely collected measurements
and laboratory results from the MIMIC-II
Clinical Database, we developed and vali-
dated “TREWScore,” a targeted real-time
earlywarning score for septic shock. Surveil-
lance in the ICU is particularly important
because the ICU population is fragile and
sepsis that goes unnoticed for a prolonged
duration and develops into septic shock
canhavecatastrophicconsequences.Atcom-
parable specificities, TREWScore achieved
a higher sensitivity than did either a rou-
tine screening protocol frequently used to
initiate treatment for severe sepsis and septic
shock (18, 20) or MEWS, a general severity
score that has been used to identify sepsis
(41,42).Diagnostic toolswith lowsensitivity
are problematic because they will fail to
identifymanypatients likely tohave theout-
come of interest, limiting the number of pa-
tients benefiting from early therapy.

Other investigators have implemented
screening tools within the EHR based on
criteria established in the Surviving Sepsis
Campaign (SSC) guidelines to detect pa-
tients at various stages of the sepsis syndrome
(18,20,21,45). For example,Herasevich et al.
implemented a set of automated screening
criteria (sniffer) to detect severe sepsis and
septic shock (18). Nguyen et al. developed
an alert based on the presence of two of the
four SIRS criteria and hypotension or hypo-
perfusion (20). Recently, Umscheid et al. im-
plemented a similar tool based on a six-point
scoringsystemthat included theSIRScriteria,
hypotension, and hypoperfusion (21). Al-
thoughthese toolshavesuccessfully identified
patients with severe sepsis and septic shock,
their reliance on measures of organ dys-
function as key features limits their ability
to identify patients before the onset of sepsis-
related organ dysfunction. This is potentially
problematic because organ dysfunction
may occur suddenly and only briefly pre-
cede the onset of septic shock. The window
of opportunity to intervene in such cases
andmitigate orprevent shock is small or ab-
sent (6, 9).

When compared to an example routine
screening tool (similar to those discussed
above), TREWScore showed a 58.6% in-
crease in the number of patients identified
before any sepsis-related organ failure.
One factor contributing to TREWScore’s
ability to identify patients at risk for sep-
tic shock early is that unlike the above
Fig. 3. Comparison of prediction performance. (A) Each row represents a septic shock patient in the
validation set from the time of ICU admission to the onset of septic shock. The graph was truncated to only

show time points within 120 hours of septic shock onset. Individuals were aligned on the basis of time to
septic shock after ICU admission. For visual clarity, we further subsorted individuals with similar time-to-
shock by time of TREWScore identification. (B) Identification times for patients are shown from up to 48 hours
before organ dysfunction until the onset of sepsis-related organ dysfunction (blue line). Patients were sorted
by time to organ dysfunction and then for visual clarity, patients with similar times until the onset of organ
dysfunction were subsorted by the time of identification by TREWScore. (C) Each row depicts a patient from
the time of ICU admission (left edge) until the time of septic shock (red line). The individual’s data are shown
in gray from the time of admission until first identification by either system. The bar then becomes orange if
the patient was first identified by TREWScore or green if the patient was first identified by the routine
screening protocol. This color continues unless the patient is later identified by the second system, at which
point the bar becomes purple. If a patient is simultaneously identified by both systems, then the bar transi-
tions directly from gray to purple.
August 2015 Vol 7 Issue 299 299ra122 4
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approaches, it does not rely solely on SSC guideline–based features. Risk
factors and associated weights are dependent on data patterns and
features that are automatically chosen (learned) by the algorithm.
TREWScore is calculated using 27 features automatically computed
from routinely collected measurements in the EHR. Although most
are direct patient measurements (SBP, RR, BUN, etc.), some reflect
the input of expert opinion (SOFA score and its components and SIRS
criteria). Still others, such as the shock index and the BUN/creatinine
ratio, are indices that have previously been informative in characterizing
severity of illness and predicting outcomes (46–48). These features were
retained by the algorithm because they strengthened the model. Other
features that did not improve the model were rejected. In this way, the
algorithm had the opportunity to capitalize on expert opinion and
strengthen themodel with additional data-driven features. The retained
features have face validity in that aberrations would seemingly occur in
a patient progressing toward septic shock.

Previous studies have used learning algorithms and data from the
EHR to develop tools related to early identification of septic shock.
Hug developed a model to predict hypotension in patients with SIRS
(49). Thiel et al. demonstrated that routinemeasurements could identify
septic shock patients a few hours before septic shock but were only able
to achieve a sensitivity of 55% (34). Shavdia developed a model that
identified patients who later developed septic shock, but the study sam-
ple size was small, containing only 26 patients who had hypotension
despite fluid resuscitation (36). Ho et al. showed improvement over
the techniques presented by Shavdia by using amissing data imputation
method; however, their study only evaluated performance on predic-
tions made a few hours before septic shock onset (37). In each of these
studies, the time until the onset of septic shock was used to define
whether a patient was at risk for septic shock at a particular time point.
However, when developing a predictive model for septic shock, none of
the abovemethods accounted for the potential censoring effects of clin-
ical treatments on the time of septic shock. For example, the outcome in
patientswho did not experience septic shock but received a fluid bolus, a
characteristic treatment for septic shock, is ambiguous. These patients
can be regarded as positive cases, where the fluid bolus prevented the
development of septic shock. However, they can also be regarded as
negative cases, where the fluid bolus was an instance of overtreatment.
It is not possible to know for certain what the patient’s outcome would
have been in the absence of treatment. Even among patients who expe-
rience septic shock, treatment may delay the onset of septic shock and
affect the estimation of time until the event. As further described in the
Materials andMethods section, TREWScore addresses these challenges
by incorporating uncertainty about the true label when learning the pre-
dictive model.

A key clinical implication of identifying patients at high risk for pro-
gressing to septic shock early is the potential to reliably improve sepsis
treatment and patient outcomes. Earlier efforts to identify and manage
patients with sepsis and sepsis-related complications have focused on
achieving compliancewith sepsis bundle components within 3 to 6 hours
of severe sepsis or septic shock onset (6–8). However, timely bundle com-
pliance remains a recurring challenge in early intervention studies (7, 8).
A tool like TREWScore that identifies at-risk patients early should pro-
vide caregivers greater opportunity to intervene before or at the time of
clinical deterioration.

An important related issue to consider is the extent to which clini-
ciansmight respond to a warning triggered by a TREWScore indicating
that a patient is at high risk of progressing to septic shock. Currently,
www.Scien
this is not known but could be related to factors independent of the pre-
dictive value of the score. These factors include the frequency with
which care providers are notified about at-risk patients and the mech-
anism by which the warning would be conveyed. Before deployment of
a decision support tool like TREWScore, investigation of these issues,
the intended work environment, and other human factors is warranted
so that alarm fatigue is avoided and the value of the tool can be opti-
mized in the clinical setting (50). The approach to warning care providers
can be tailored to the end user. An alert could be sent each time a patient’s
score exceeds a certain threshold or only after the threshold is consistently
exceeded for some predetermined period of time (as illustrated in Fig. 1B).
Alternatively, notification could be restricted to a frequency deemed
acceptable by the end users. Further, although our results are reported at
a sensitivity of 0.85 (specificity, 0.67), the risk threshold can be adjusted by
accepting higher or lower specificity.

It is also important to acknowledge that the benefits of initiating
treatmentmany hours before the onset of septic shock or even the onset
of sepsis-related organ failure have yet to be studied, in part because of
the lack of a highly sensitive and specific tool, like TREWScore, to iden-
tify patients at risk for septic shock. Identifying such patients well before
the onset of septic shock, and in most cases before the onset of sepsis-
related organ dysfunction, would allow consideration of earlier clinical
assessments, diagnostic tests, therapeutic interventions, and transfers to
higher or lower levels of care. For example, some care providers may be
motivated to obtain early culture data and imaging studies to identify
sources of infection. Theymay even start antibiotics empirically. Others
may contemplate the benefits of central line and Foley catheter removal
to limit infection risk versus the value these devices may add to mana-
ging sepsis when it does occur. Still others may simply keep patients
identified by TREWScore in the ICU longer than planned. The
downstream effects on quality of care and resource allocation of these
different approaches and actions are not known. However, they can
only be systematically studied if high-risk patients can be identified ac-
curately. This could lead to new treatment strategies and approaches to
triage and bed utilization and potentially further decrease the mortality
caused by septic shock.

There are several limitations to this study. First, TREWScore is cur-
rently validated only to measure detection performance. A prospective
study evaluating whether and how the availability of TREWScore can
affect therapeutic judgments is needed. Second, the MIMIC-II
database, albeit large, reflects patients admitted to the Beth Israel Dea-
coness Medical Center between 2001 and 2007 (40); additional valida-
tion with data from other hospitals is needed. The MIMIC-II database
is developed from medical, surgical, and cardiac ICUs (see table S2 for
population details), but how well it will perform in a specific type of
ICU has not been characterized. Further, the management of sepsis
has likely evolved since this cohort was established in 2001 (13), al-
though recent work continues to suggest that patients with sepsis are
frequently identified late (7, 8, 51). Third, some of the features in the
model are defined by ICD-9 (International Classification of Diseases,
Ninth Revision) codes. The sensitivity and specificity of these codes are very
diagnosis-dependent (52). For example, one study found that ICD-9 codes
for severe sepsis and septic shock were undercoded among patients
admitted to the hospital with a confirmed diagnosis of severe sepsis or sep-
tic shock (53). Moreover, coding practices were biased to more frequently
code more severe cases (53). This limitation can often be overcome by
extracting diagnosis-related information from the discharge notes
using automated techniques (54). Last, our definition for septic shock
ceTranslationalMedicine.org 5 August 2015 Vol 7 Issue 299 299ra122 5
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includes hypotension refractory to volume resuscitation with ≥20 ml/kg
over the preceding 24 hours. Most studies have required the use of similar
volumes to define resuscitation, but over a shorter interval, to define septic
shock. Despite this limitation, themortality among those with septic shock
in this study was 39.3%, which is consistent with previously reportedmor-
tality rates (55).

In summary, our study showed that a TREWScore could predict,
many hours before standard screening protocols, patients at high risk
of developing septic shock. TREWScore used only measurements rou-
tinely collected in the EHR and accounts for the effects of censoring due
to treatment in estimating the model. In most of these cases, TREWScore
identified those at highest risk of developing septic shock long before any
evidence of organ dysfunction. Although further studies are needed at
other institutions to establish generalizability of the proposed tool, the
high performance of TREWScore using a large andheterogeneous cohort
(single center butmultiple different ICUs) indicates that data-driven early
warning scores can be powerful tools for adverse-event prediction.When
they are coupled with evidence-based therapies and performance im-
provement initiatives, there is substantial potential to improve patient
outcomes and help make real the vision of learning health care systems.
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MATERIALS AND METHODS

Study design
We applied ourmethod to theMIMIC-II Clinical Database (40), a pub-
licly available data set of deidentified EHRs collected at Beth Israel
Deaconess Medical Center in Boston, MA. The data set contains all pa-
tients admitted to ICUs, including medical, surgical, and cardiac units,
between 2001 and 2007 (table S2).We identified 16,234 distinct patients
age 15 years or greater at ICU admission with at least one assessment
each of GCS, BUN, hematocrit, and heart rate recorded in the EHR.

On the basis of the SSC guidelines, a patient was identified as having
SIRS if any two SIRS criteria were present simultaneously. Suspicion
of infection was defined using ICD-9 codes indicating infection as in
Angus et al. (1) or by the presence of a clinical note that mentioned
sepsis or septic shock. Patients with SIRS and suspicion of infection were
considered to have sepsis. Patients with sepsis who also had sepsis-related
organ dysfunction were defined to have severe sepsis. We defined organ
dysfunction due to sepsis using the criteria specified in the SSC guide-
lines (45) (see Supplementary Materials and Methods for a list of the
criteria used).

Patients with septic shock were defined as those whomet the criteria
for severe sepsis, had hypotension, defined by SBP less than 90 mmHg
for at least 30 min, and received adequate fluid resuscitation, defined as
the total fluid replacement per kilogram over the past 24 hours≥20 ml
or total fluid replacement≥1200 ml (48). Of the 16,232 patients in the
data set, 2291 patients (14.1%)met the criteria for septic shock.We refer
to patients who developed septic shock during their ICU stay as positive
cases.

Patientswith severe sepsiswho received a fluid bolus of at least 500ml,
a characteristic treatment toprevent septic shock,were considered tohave
a censored outcome. The administration of treatment can affect a pa-
tient’s outcome by either delaying the onset of septic shock or by
preventing the patient from ever developing septic shock. In the case
where the patient developed septic shock despite treatment, we considered
the patient to be interval-censored, which is to say that it is unknown
whether treatment delayed the onset of septic shock and to what extent
www.Scien
(38, 39). Therefore, the exact time of shock onset in the absence of treat-
ment could have occurred at any point between the time of treatment
and the observed time of septic shock. Although interval censoring
needs to be accounted for differently in model development, for valida-
tion, these patients are still considered positive because they are ulti-
mately known to develop septic shock (38).

Alternatively, some patients received treatment and never developed
septic shock.However, it is unknownwhether these patientswould have
developed septic shock without treatment (38). In the absence of treat-
ment, the patient may have developed septic shock at any time point
after the time of treatment or may never have developed septic shock.
We call these patients right-censored after treatment. Although these
patients can add information to the development of the model, we can-
not report accurate model performance on them because of the uncer-
tainty ofwhether theywould have developed septic shock in the absence
of treatment (38). Therefore, our reported validation performance does
not include these patients. Patients who never developed septic shock
and did not receive treatment characteristic for shock are referred to as
negative cases.

We separated the data set into development and validation sets using
random sampling. The development set consisted of 13,181 patients
(1836 positive, 11,178 negative, and 167 patients with right censoring
after treatment). The validation set consisted of 3053 patients (455 pos-
itive, 2556 negative, and 42 patients with right-censored after treat-
ment). The development set was used to develop the TREWScore.
The validation set was put aside for evaluating performance.

Model development
To develop TREWScore, the following steps were taken using the de-
velopment set: (i) patient-specificmeasurement streamswere processed
to compute features (candidate risk factors); and (ii) the coefficients
used in the targeted early warning score were estimated using a super-
vised learning algorithm. The learning algorithm automatically selected
the features thatwere predictive of septic shock, and the resulting output
was a model containing the list of predictive features and their coeffi-
cients. Below, we describe model development and evaluation in more
detail. Further details on feature processing and computation are given
in the Supplementary Materials.

Model development: Estimating model coefficients
To develop a model for predicting an individual’s risk of developing
septic shock, we fit a Cox proportional hazards model using the time
until the onset of septic shock as the supervisory signal. Intuitively, this
approach assumes that at times approaching the onset of shock, the sep-
sis severity level is worse than at times well before the onset. The risk of
shock at a time t given the features X at that time, denoted by l(t|X), is
computed from two parts: a time-varying baseline hazard function, l0,
that computes the instantaneous probability that the onset of septic
shock occurs at time t and a second term that weights an individual’s
feature values at time t by learned regression coefficients b (see equation
below) (56).
lðtjX Þ ¼ l0ðtÞ expfXbT g

Akey challenge with training thismodel is the presence of unknown
or censored event times (38, 39). Censoring occurs in twoways. Clinical
interventions may influence the observed time of septic shock by delay-
ing the onset of septic shock (interval censoring) or by preventing the
development of septic shock entirely (right censoring after treatment).
ceTranslationalMedicine.org 5 August 2015 Vol 7 Issue 299 299ra122 6
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Whereas right censoring after treatment is naturally accounted for by
the Cox proportional hazards model, the model does not a priori ac-
count for interval censoring. Model parameter estimation for the Cox
proportional hazards model in the presence of interval censoring has
been addressed using the expectation-maximization algorithm (57)
and multiple imputation–based approaches (56). Here, we used the lat-
ter because this approach was much less computationally intensive and
simpler to implement using available software.

The multiple imputation approach handles censoring by imputing
multiple copies of the development data set. On the subjects for whom
the time to event is interval-censored, this approach imputes the exact
event time within each copy by sampling from the estimated baseline
hazard function (56). Each copy is analyzed separately, and then the
results are combined using Rubin’s equations (58).

To impute the exact event times for each copy, the baseline hazard
function was fit using a multiple imputation method (MIICD R
package, version 2.0). For computational efficiency, the baseline hazard
function was estimated from a subset of 400,000 time-to-event and fea-
ture pairs from the development set (59). The resulting baseline hazard
function was then used to repeatedly sample the event time for each
interval-censored sample and generate N complete copies of the devel-
opment data set. Individual copies differ only in the imputed event
times. For our experiments, we set N = 100.

A separate model was trained from each of the N copies of the de-
velopment data set. Individual time-to-event models were learned as a
Cox proportional hazards model with lasso regularization (glmnet R
package, version 1.9-8) (60, 61). Using lasso regularization causes the
model to automatically select a sparse subset of features that are most
predictive of the labeled outcome (62). The regularization parameter,
which controls the degree of parsimony in the learned model, was deter-
mined to be 0.01 using 10-fold cross-validation on the first sampled data
set and was fixed to this value for training the subsequent models.

To predict on data from a new subject, predicted risk values were
obtained from each of the N models. The resulting predictions were
then combined using Rubin’s equations, which compute the final risk
value as the average of risk values outputted from each of theNmodels
(56, 58). Combining the Cox proportional hazards model with the
multiple imputation approach allows the model to incorporate infor-
mation from both interval- and right-censored patients.

Model evaluation
Model coefficients obtained from the development set were fixed and
applied to patients in the validation set as though they were observed
prospectively. Specifically, for each patient in the validation set, as new
data became available, the TREWScore was recomputed. This resulted
in a point in time risk for septic shock for each individual. An example
of the estimated risk trajectory for a sample patient in the 48 hours
preceding the onset of septic shock is given (Fig. 1B). For a fixed risk
threshold, an individual was identified as being at high risk of septic
shock if his or her risk trajectory ever rose above the detection threshold
before the onset of septic shock. For this threshold, we calculated sen-
sitivity, the probability of the risk score being above the detection
threshold given that the patient has septic shock, and specificity, the
probability that the risk score is always below the threshold given that
the patient does not have septic shock and did not experience right
censoring after treatment.

We computed the sensitivity as the fraction of patients who devel-
oped septic shock and were identified as at high risk by the model. The
www.Scien
specificity was computed as the fraction of patients who never devel-
oped septic shock and were never identified by the model. The
computation of specificity excluded all patients who were right-
censored after treatment. The ROC curve and the AUC were obtained
by varying the threshold that determinedwhich patients were identified
by the model as at risk for septic shock. When the data are right-
censored and the mechanism of censoring is not independent of time
until the event, an adjusted AUC that accounts for this bias may be ad-
ditionally desirable to measure. The conditional inverse probability of
censoring weighting (CIPCW) is a standard approach to do so (63, 64).
However, implementing CIPCW requires assuming a distribution for
the conditional probability of being uncensored given patient-specific
covariates. Because the unadjusted AUC is more commonly reported,
we used it for this study.

At a given sensitivity and specificity, for the true-positive cases, we
also computed the median time before septic shock onset and the frac-
tion of detections that occurred before any evidence of sepsis-related
organ dysfunction.
SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/7/299/299ra122/DC1
Materials and Methods
Table S1. Sample feature coefficients learned by TREWScore for a single imputation of the
development data set.
Table S2. Patient characteristics.
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Editor's Summary

 
 
 
patients suffer the most damaging effects of sepsis.
median lead time of over 24 hours, this scoring algorithm may allow clinicians enough time to intervene before the
a targeted real-time early warning score that predicts in advance which patients are at risk for septic shock. With a 

. used readily available data from patient monitors and medical records to develop TREWScore,et aldisease. Henry 
will develop sepsis and its late manifestation, septic shock, until the patients are already in advanced stages of the
treatment of this disease improves patient mortality, but the tools currently available in the clinic do not predict who 

Sepsis is a major cause of death, which remains difficult to treat despite modern antibiotics. Early aggressive
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